12 research outputs found

    MitoInteractome: Mitochondrial protein interactome database, and its application in 'aging network' analysis

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background Mitochondria play a vital role in the energy production and apoptotic process of eukaryotic cells. Proteins in the mitochondria are encoded by nuclear and mitochondrial genes. Owing to a large increase in the number of identified mitochondrial protein sequences and completed mitochondrial genomes, it has become necessary to provide a web-based database of mitochondrial protein information. Results We present 'MitoInteractome', a consolidated web-based portal containing a wealth of information on predicted protein-protein interactions, physico-chemical properties, polymorphism, and diseases related to the mitochondrial proteome. MitoInteractome contains 6,549 protein sequences which were extracted from the following databases: SwissProt, MitoP, MitoProteome, HPRD and Gene Ontology database. The first general mitochondrial interactome has been constructed based on the concept of 'homologous interaction' using PSIMAP (Protein Structural Interactome MAP) and PEIMAP (Protein Experimental Interactome MAP). Using the above mentioned methods, protein-protein interactions were predicted for 74 species. The mitochondrial protein interaction data of humans was used to construct a network for the aging process. Analysis of the 'aging network' gave us vital insights into the interactions among proteins that influence the aging process. Conclusion MitoInteractome is a comprehensive database that would (1) aid in increasing our understanding of the molecular functions and interaction networks of mitochondrial proteins, (2) help in identifying new target proteins for experimental research using predicted protein-protein interaction information, and (3) help in identifying biomarkers for diagnosis and new molecular targets for drug development related to mitochondria. MitoInteractome is available at http://mitointeractome.kobic.kr/.Peer Reviewe

    PutidaNET: Interactome database service and network analysis of Pseudomonas putida KT2440

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Pseudomonas putida </it>KT2440 (<it>P. putida </it>KT2440) is a highly versatile saprophytic soil bacterium. It is a certified bio-safety host for transferring foreign genes. Therefore, the bacterium is used as a model organism for genetic and physiological studies and for the development of biotechnological applications. In order to provide a more systematic application of the organism, we have constructed a protein-protein interaction (PPI) network analysis system of <it>P. putida </it>KT2440.</p> <p>Results</p> <p>PutidaNET is a comprehensive interaction database and server of <it>P. putida </it>KT2440 which is generated from three protein-protein interaction (PPI) methods. We used PSIMAP (Protein Structural Interactome MAP), PEIMAP (Protein Experimental Interactome MAP), and Domain-domain interactions using iPfam. PutidaNET contains 3,254 proteins, and 82,019 possible interactions consisting of 61,011 (PSIMAP), 4,293 (PEIMAP), and 30,043 (iPfam) interaction pairs except for self interaction. Also, we performed a case study by integrating a protein interaction network and experimental 1-DE/MS-MS analysis data <it>P. putida</it>. We found that 1) major functional modules are involved in various metabolic pathways and ribosomes, and 2) existing PPI sub-networks that are specific to succinate or benzoate metabolism are not in the center as predicted.</p> <p>Conclusion</p> <p>We introduce the PutidaNET which provides predicted interaction partners and functional analyses such as physicochemical properties, KEGG pathway assignment, and Gene Ontology mapping of <it>P. putida </it>KT2440 PutidaNET is freely available at <url>http://sequenceome.kobic.kr/PutidaNET</url>.</p

    Gene selection tool (GST): A R-based tool for genetic disorders based on the sliding-window proportion test using whole-exome sequencing data

    No full text
    <div><p>Whole-exome sequencing (WES) can identify causative mutations in hereditary diseases. However, WES data might have a large candidate variant list, including false positives. Moreover, in families, it is more difficult to select disease-associated variants because many variants are shared among members. To reduce false positives and extract accurate candidates, we used a multilocus variant instead of a single-locus variant (SNV). We set up a specific window to analyze the multilocus variant and devised a sliding-window approach to observe all variants. We developed the gene selection tool (GST) based on proportion tests for linkage analysis using WES data. This tool is R program coded and has high sensitivity. We tested our code to find the gene for hereditary spastic paraplegia using SNVs from a specific family and identified the gene known to cause the disease in a significant gene list. The list identified other genes that might be associated with the disease.</p></div

    A plot of the significant gene list of all chromosomes except X and Y chromosomes.

    No full text
    <p>To distinguish the chromosomes, they are expressed in red and blue. The candidate genes of <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0185514#pone.0185514.t001" target="_blank">Table 1</a> are represented by gene names and their trimmed score values. Details of the trimmed score option have been provided in the <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0185514#pone.0185514.s002" target="_blank">S1 File</a> (GST User guide).</p
    corecore